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ABSTRACT

Algorithmic identification is the crux for several binary analysis
applications, including malware analysis, vulnerability discovery,
and embedded firmware reverse engineering. However, data-driven
and signature-based approaches often break down when encoun-
tering outlier realizations of a particular algorithm. Moreover, re-
verse engineering of domain-specific binaries often requires col-
laborative analysis between reverse engineers and domain experts.
Communicating the behavior of an unidentified binary program
to non-reverse engineers necessitates the recovery of algorithmic
semantics in a human-digestible form. This paper presents PER-
FUME, a framework that extracts symbolic math expressions from
low-level binary representations of an algorithm. PERFUME works
by translating a symbolic output representation of a binary function
to a high-level mathematical expression. In particular, we detail
how source and target representations are generated for training a
machine translation model. We integrate PERFUME as a plug-in
for Ghidra–an open-source reverse engineering framework. We
present our preliminary findings for domain-specific use cases and
formalize open challenges in mathematical expression extraction
from algorithmic implementations.

CCS CONCEPTS

• Security and privacy→ Software reverse engineering.
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1 INTRODUCTION

Automatic identification of known functions is critical for a wide
range of binary analysis applications, including malware analysis,
binary instrumentation, and vulnerability detection. In general,
function identification relies on mapping a target binary to a dataset
of known functions. For instance, binary analysis tools have built-in
capabilities to detect common library functions based on signatures.
Advances in data-driven approaches have led to more effective
and less rigid techniques that first extract features from source
and target functions before mapping the representations. However,
depending on the domain, the heterogeneity of an environment
may hinder the efficacy of these techniques.

The effectiveness of function mapping depends on the complete-
ness of the dataset and the canonicity of intermediate representa-
tions. For instance, prior works have focused on discovering known
vulnerabilities in IoT firmware [13, 21, 22]. Static and dynamic fea-
tures are extracted from known vulnerable functions and compared
to functions extracted from a target binary. First, such an approach
can only detect vulnerabilities from a given dataset. Second, data-
driven approaches assume that machine learning can automatically
learn the mapping of function features agnostic to architecture. In
reality, there may be an infinite number of permutations between
target architecture, compiler optimizations, and customizations
of known functions. Intuitively, intermediate representations and
function heuristics of a binary program do not capture the seman-
tics of the original algorithm.

This paper aims to recover math expressions of algorithms from
their low-level binary representations in a form close to their “natu-
ral” human-readable form. We present PERFUME, a framework that
maps symbolic output representations of a function to high-level
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mathematical expressions. PERFUME works by generating simpli-
fied symbolic output representations of a function close to the high-
level mathematical expression. We show how these representations
can be fed into machine translation models to translate symbolic
output representations to high-level math expressions. We initially
focus on mathematical domains where the output of a function is
a mathematical combination of the inputs, such as cyber-physical
systems or cryptographic functions. We integrate PERFUME as a
plug-in for Ghidra [17]–a powerful open-source reverse engineer-
ing framework. Extracting high-level mathematical operations not
only provides more architecture- and implementation-agnostic rep-
resentations, but also provides a semantically-rich representation
that is understandable to domain experts.
Contributions. Our contributions are summarized as follows.

• We formalize the simplification of symbolically executed
function outputs to extract a symbolic output expression
close to the original algorithmic expression.

• We propose PERFUME, a framework that translates the sym-
bolic output expressions to high-level mathematical expres-
sions from symbolic output.

• We formalize the associated challenges in generating train-
ing data corpora for machine translation and present prelim-
inary results in machine translation.

• We integrate our symbolic execution framework into Ghidra [17]
as a plug-in and open-source our code.

2 PRELIMINARIES

In this section, we briefly discuss the preliminary information neces-
sary to understand the motivation underlying PERFUME’s design.

2.1 Symbolic Execution

Symbolic execution is a static program analysis technique in which
execution is simulated on symbolic program states. In a symbolic
program state, some data stored in the state are made symbolic. In
other words, instead of storing concrete values, symbolic expres-
sions over symbolic variables are stored. As execution is simulated,
these symbolic expressions are updated according to the semantics
of the instructions. When a branch is encountered during symbolic
execution that depends on symbolic data, both paths are followed
with separate symbolic program states. Each of these program states
receives a constraint on the appropriate symbolic expressions to
capture the branching condition. Symbolic execution allows an
analyst to reason about the properties of a program with respect
to multiple possible configurations of a program state [3]. For ex-
ample, by evaluating a symbolic expression in a program state that
corresponds to the length of an input buffer, it is possible to deter-
mine if a buffer overflow can occur. Therefore, symbolic execution
has benefits over dynamic analysis, in which individual traces of a
program are executed with concrete program states.

In our context, we are specifically interested in the output of
a function that we have performed symbolic execution on. This
output is a symbolic expression capturing the relationship between
the function’s input, symbolic variables passed as input parameters,
and the return value. Binary analysis frameworks with symbolic
execution engines such as angr [1] allow for creating symbolic states
of a binary program and performing symbolic execution. Specific to

symbolic execution on a binary program, the symbolic expressions
are stored in the registers and memory locations of the symbolic
program state. The symbolic variables used in these expressions are
usually bit vectors, as opposed to integers–which are more natural
to humans. Symbolic expressions over symbolic bit vectors usually
involve low-level bit operations, such as bit shifts. These operations
hinder the readability of the expressions significantly. Thus, our
goal is to simplify this symbolic expression as much as possible
to produce human-readable math expressions. However, in reality,
deterministic simplification of symbolic expressions is intractable
for modern programs–even for simple embedded firmware. Thus,
the simplified representationswill need to be fed intomore powerful
translation mechanisms such as machine translation models to
obtain a human-readable expression.

2.2 Sequence to Sequence Translation

Today’smachine translation (MT) systems are sequence-to-sequence
neural networks. These networks first encode the source sentence
in an intermediate vector space, then predict a target sentence from
the intermediate representation. The dominant MT model architec-
ture is the transformer [24]. The unique power of the transformer
comes from its attention mechanisms. Attention allows the model
to learn which surrounding words provide the most important
contextual information for translating a particular word. While
transformers were originally developed for translating between
natural languages, they are also an important component of large
language models like BERT [7] and GPT-3 [5] and have even per-
formed well on non-linguistic tasks like image classification [8].

In our context, we are interested in translating binary program
representations to mathematical expressions. Recent works have
shown that machine translation can be successfully applied to sym-
bolic mathematics. For example, [15] used transformers to integrate
functions and solve first and second order differential equations. In
our case, we would like to explore the feasibility of translating a
symbolic output representation to a human-readable mathematical
expression.

3 PERFUME OVERVIEW

We first present the system model before describing the design
goals, challenges, and overview.

3.1 System Model

We assume that a binary analyst is provided a stripped binary file.
We initially focus on analyzing a single binarywith fully satisfied de-
pendencies, i.e., we assume the program behavior is self-contained
within the binary–which is common in embedded firmware bina-
ries.1 We also assume the analyst can correctly load the binary
address and is provided the target function locations in the binary.
Function classification and boundary identification are outside of
scope. Our goal is to extract a mathematical expression for a given
target function.

1Although we limit ourselves to these conservative assumptions, future work can
explore recent advances in fusing more complex binaries for simplified analyses [12].
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3.2 Design Overview

Figure 1 depicts an overview of PERFUME. A binary implemen-
tation of an algorithm is symbolically executed and simplified to
generate a symbolic expression representation. The extracted sym-
bolic expression is fed into a sequence to sequence translation
model, which outputs a corresponding mathematical expression.
An analyst interacts with the human-readable output expression
and directly integrates the representation into the workflow. For
instance, Figure 1 depicts an analyst integrating an output expres-
sion into a control systems model, i.e., providing semantics to the
reverse-engineered algorithm.
Goals and challenges.We summarize the goals and challenges of
PERFUME as follows.

• Our symbolic expression extraction should simplify expres-
sions as much as possible, i.e., by deterministically translat-
ing bit vector representations to human-readable form.

• For readability, PERFUME should be able to replace known
functions with their respective symbols, i.e., provide a mech-
anism to replace known functions with their symbols in the
output expression.

• Ideally, machine translation is not needed. In reality, we
need to identify when symbolic execution breaks down and
formalize an appropriate sequence representation.

4 APPROACH

4.1 Source Representations: Binary Function

Level Symbolic Output

The first step of PERFUME is to extract symbolic expressions from
the target binary in order to convert them to a human-digestible rep-
resentation. To this end, we use symbolic execution. In this section,
we discuss the approach we use to extract symbolic expressions
from binary executable files. This module is used both in the con-
text of data generation, to create pairs of mathematical expressions
and symbolic expressions, as well as in the reverse engineering
phase, to extract symbolic expressions to be translated. We follow
a binary function based approach, in which we perform symbolic
execution on a particular function, the target function, recovered
from the target binary, both supplied by the analyst. The resulting
symbolic expression captures the relationship between the input
of the function (its parameters) and its output (the return value).
We assume this relationship captures the entire mathematical com-
putation implemented in the function. In other words, we assume
no component of the computation is retrieved via a memory ac-
cess, either to global memory or to a pointer passed as a parameter.
We discuss the complications caused by such memory accesses in
Section 8.2.

The benefit of performing symbolic execution, as opposed to
analyzing the binary instructions directly, is that the symbolic ex-
pression obtained is relatively free from the noise found in the
binary implementation of a mathematical computation. Such noise,
for example, can be introduced by instructions manipulating mem-
ory addresses or moving values between registers. While these
instructions are necessary for computation, they do not contribute
to the semantics of the program.

4.1.1 Symbolic Program State Creation. In preparation of symbolic
execution, we create a symbolic program state with the instruction
pointer set to the entry point of the target function. We also modify
the program state to include symbolic variables in the registers and
memory locations that correspond to the function’s parameters.
This can be achieved by using information regarding the calling
convention employed by the target binary. The calling convention
dictates which registers and memory locations should be used to
pass function parameters and return values between a caller and
callee function. Using a liveness analysis on these registers and
memory locations at the callsite of the callee function, PERFUME
can identify which function parameters exist for the callee function.
We allow the analyst to provide a name for each of the symbolic
variables used as function parameters. For machine translation,
we use this to ensure that the variable names in the mathemati-
cal and symbolic expressions are consistent. Also, in the reverse
engineering phase, this allows the analyst to choose whichever
variable names aid in improving understandability of the extracted
expression.

4.1.2 Symbolic Execution. Symbolic execution is then performed
with this program state as the initial state until all branches reach
a return instruction of the function. We refer to these states as the
final states. From each final state, we extract the return value, also
according to the calling convention. This return value is a symbolic
expression that captures the relationship between the input and



output of the function for a single execution path. This path is
subject to path constraints placed on the registers and memory by
branching instructions. We merge the symbolic expressions of all
final states into a single expression on the path constraints.

4.1.3 Simplification. After symbolic execution, we have a raw bit
vector representation of the mathematical expression. The next step
is to simplify this expression, before passing it to the MT phase, in
order to improve its understandability. To this end, we perform a
number of deterministic steps to strip away information from the bit
vector representation that is unnecessary when only trying to gain
a higher level understanding of the computation being performed.
This information, for example, includes the operations to increase
the width of a bit vector by appending zero bits. We also convert
constant bit vectors that represent integers in two’s complement
notation into signed integer values. Similarly, we convert constant
bit vectors representing floating point numbers to rational numbers.
Symbolic execution example.We show an illustrative example
of how PERFUME extracts a symbolic expression from a func-
tion in Figure 2. The source code of the function in question, f, is
shown in Listing 1. PERFUME starts by constructing a symbolic
program state that corresponds to calling the function f with in-
put parameters a and b, which are symbolic variables. We assume
the calling convention for this example dictates that the first and
second integer arguments to a function are passed in the registers
rdi and rsi, respectively. After creating the start state, PERFUME
performs symbolic execution. The conditional statement, shown
on Line 2 of Listing 1, causes a branch in execution. One branch
has the path constraint 𝑎 < 𝑏, while the other has 𝑎 ≥ 𝑏. As there
are no further branches in execution, we have two final states.
We assume, according to the calling convention, an integer return
value is passed in the register rax. We merge the symbolic expres-
sions extracted from this register into a single expression, while
using the path constraints. This yields the raw symbolic expression
<BV64 if a[31:0] <s b[31:0] then (0x0..0x1 + a[31:0])else (0x0..0x2 + b[31:0])> .
We perform the simplification step on this symbolic expression,
which yields the simplified symbolic expression If(a<b,(1+a),(2+b)).
Referring back to Listing 1, it is clear that the simplified symbolic
expression is a more understandable representation of the source
code.

1 int f(int a, int b) {
2 if (a < b) {
3 return a + 1;
4 } else {
5 return b + 2;
6 }
7 }

Listing 1: An example function to illustrate how PERFUME

extracts symbolic expressions.

4.1.4 Symbolic Expression Summarising. The default mathematical
operators provided by a processor architecture are usually limited
to a small number of rudimentary operations (e.g., addition, sub-
traction, and multiplication). In order to compute more complicated
mathematical expressions, programmers frequently rely on mathe-
matical libraries. This presents challenges and opportunities for a
symbolic execution based approach. As the mathematical computa-
tions inside the functions of these libraries are often complicated,
this can significantly increase the execution time of the symbolic
execution engine and complicate the resulting symbolic expression.

However, since these are usually well-known mathematical func-
tions, we can summarize the computations of these functions in
the symbolic expression, by using a symbolic function, instead. The
function arguments passed to this library function during symbolic
execution are now used as input to this new symbolic function.
This significantly improves the understandability of the symbolic
expression. Note that since this is only a symbolic function, it is
not possible to evaluate it on input arguments using an SMT solver.
However, this is not a limitation of PERFUME, because we are only
interested in the readability of symbolic expressions and not in
evaluating them.

If the binary is stripped, it is necessary for PERFUME to have
information regarding the prototype of the function (how it receives
input and yields output), as well a sensible name to use for its
summary in the resulting symbolic expression. We delegate the
decision of whether to perform symbolic execution on a callee
function, or to summarise it, as well as choosing the name, to the
analyst.

We illustrate the idea of either including or summarising callee
functions in the resulting symbolic expression with the functions
shown in Listing 2. The target function, f0, makes a call to a callee
function f1. PERFUME can summarise the computations within
this function, by replacing them with a symbolic function. The
resulting expression is a + f1(b + 0.5, c). We assume the name f1
of this function is provided to PERFUME. On the other hand, if
PERFUME traverses f1, the resulting expression includes the subex-
pressions found therein, that is a + 3(b + 0.5)+ c. Depending on the
context and program under analysis, an analyst may either choose
to include or summarize the expressions of a callee function to
improve understandability.

1 float f0(float a, float b, float c) {
2 return a + f1(b + 5.0, c);
3 }
4
5 float f1(float b, float c) {
6 return 3.0 * b + c;
7 }

Listing 2: Example functions to illustrate the capability of

PERFUME to summarise the mathematical computations

found in functions.

4.2 Target Representations: Mathematical

Expressions

Our target representations are human readable high-level math-
ematical expressions. As demonstrated in Figure 2, we currently
focus on transferring low-level operations into simple math expres-
sions. Such expressions contain simple arithmetic operations, such
as addition and subtraction, as well commonly used mathemati-
cal functions, such as sine and cosine. We discuss the details of
synthesizing expressions in Section 4.3.

4.3 Dataset Synthesis

Target representation synthesis. To synthesize target represen-
tations for MT training, we instrumented the implementation of the
random math expression generator from a previous work [15]. The
process is illustrated in Figure 3. We first generate a random tree
structure. The internal nodes are then filled with random unary/bi-
nary operators and functions. We subsequently fill in the leaves



Figure 2: A visual illustration of how PERFUME uses symbolic execution to extract a symbolic expression from the function

shown in Listing 1.

Figure 3: The process of synthesizing target representation.

Unary operators -
Binary operators +, -, *, /, %

Binary bit operators or, xor, left-shift, right-shift
Unary functions abs, acos, asin, atan, ceil, cos, cosh, cbrt,

exp, fabs, floor, log, log10, sin, sinh, sqrt,
tan, tanh, acosh, asinh, atanh, atanh,
exp2, log2, tgamma

Binary functions pow
Table 1: A list of supporting arithmetic operators and func-

tions in our target representation.

with random variables or constants. Although we initially focus on
generating expressions consisting of simple arithmetic operators,
(+,−,×,÷,%), the mathematical expression synthesizer supports
more complex functions and operators such as sine and cosine. In
Table 1 we list out the operations and functions we include for syn-
thesizing. The previous implementation was modified to support
consistent variable renaming, i.e., the first variable is named a1,
the second variable is a2, and so on. This normalizes the variable
names prior to translation.

The math expression synthesizer currently supports both infix
and Polish notation, although we will initially focus on infix ex-
pressions since they are more natural. We will also initially ignore
monotonic ordering of expressions as we anticipate the machine
translation models will learn commutative, associated, and distribu-
tive properties.
Source representation data synthesis. In our preliminary exper-
iments, we try to answer two questions:

• What is the best training model for translating our represen-
tations?

Math expression a1+(a2-a3)
Target representation (infix) a1 + ( a2 - a3 )
Source representation (infix) a1 + ( a2 + ( -1 * a3 ) )
Target representation (prefix) + a1 - a2 a3
Source representation (prefix) + a1 + a2 * -1 a3

Table 2: Data synthesized.

• Which target representation is easier to train with, infix or
prefix? Is MT able to reason about the parentheses of math
expressions?

In order to answer these two questions, we further simplify our
target representation data synthesis to only “+” and “-” over integer
variables. On the source representation, we disable an option in
angr, which will turn a simple math expression a - b into a + (-1
* b) in symbolic execution. Although it looks like we are getting
further away from the target representations, such difference is
actually a nice entry problem for MT to solve. We can fine tune our
model well before trying to translate more complex expressions. In
Table 2 we give an example of target and source representations
for a simple math expression.

4.4 Machine Translation for Symbolic Math

In the next step of the PERFUME framework, we use machine trans-
lation to convert symbolic execution output to human-readable
expressions. There are several challenges associated with using MT
in a mathematical setting. First, the source and target languages
in our domain are much more constrained than natural languages.
While an MT model on natural language might see tens or hun-
dreds of thousands of unique vocabulary words, our preliminary
dataset has a total vocabulary size of 40. This huge difference in
vocabulary size causes natural language translation models like
the base transformer [24] to overfit and perform abysmally for
our application. To combat this overfitting and achieve acceptable
translation performance, we conducted preliminary experiments to
determine the best Transformer hyperparameters for our specific
application. The results of these experiments are summarized in
Table 3 and our model implementation is described in 5.2.



model layers model dim. FF dim. Dev. BLEU Test BLEU

Transformer Base [24] 6 512 2048 3.6 3.6
Transformer Slim 6 128 512 3.6 3.6
Transformer Shallow 2 512 2048 8.0 8.0
Transformer Slim, Shallow 2 128 512 8.0 8.0
Transformer Slimmer, Shallow 2 64 256 27.9 27.9
Transformer Dim=Vocab, Shallow 2 40 160 40.3 40.6
Transf. Dim=FF Dim=Vocab, Shallow 2 40 40 22.7 22.8
Transformer Vocab=Dim. 6 40 160 10.4 10.4
Transformer Slimmest Shallow 2 20 80 6.9 6.9

Table 3: Results from MT experiments. Model dimension was found to be the most important hyperparameter for scaling to

our use case.

5 IMPLEMENTATION

5.1 Symbolic Expression Extraction

We implement the symbolic execution module of PERFUME as
a plug-in to the Ghidra software reverse engineering suite [17].
Ghidra allows an analyst to explore a binary executable using a
polished graphical-user interface (GUI) and gather information this
way. However, while Ghidra is a user-friendly reverse engineering
tool, its out-of-the-box features do not include some of the more
advanced program analysis techniques, such as symbolic execution.
We create a separate module, to be used by the plug-in, that is built
on the angr [1] binary analysis framework. This module handles
the symbolic execution.

Our Ghidra plug-in contains a GUI that allows the analyst to
enter the information required by the angr module to perform
symbolic execution. This information is passed to the angr mod-
ule, which performs symbolic execution and passes the simplified
symbolic expression back to Ghidra, to be displayed to the analyst.

In the angr module, we configure the symbolic execution engine
to optimize the readability of the created symbolic expressions. In
particular, we noticed that disabling all options to simplify symbolic
expressions yields the most readable results. We use the hooking
feature of angr to achieve the symbolic expression summarising.
This feature allows one to replace specific instructions during sym-
bolic execution. In its default configuration, the symbolic execution
engine uses this feature to replace the return value of unavailable
library functions with an unconstrained symbolic variable. Using
such a variable is unsatisfactory for our purposes, since this discards
all information regarding the symbolic expressions passed to this
function as input parameters. Instead, we use the hooking feature
to replace the return value with a symbolic expression consisting
of a symbolic function and the appropriate symbolic expressions as
input parameters. We create these symbolic functions dynamically,
during symbolic execution, using a name provided by the analyst.
We use the Decompiler Parameter ID analysis of Ghidra to deter-
mine the prototype of the function in order to select the correct
symbolic expressions as the input parameters to the function.

5.2 Machine Translation Experiments

In Table 3, we report BLEU [19], the standard evaluation metric
in machine translation. BLEU is reported on a scale of 0 to 100,
with higher scores being better. Details of evaluation metrics are

discussed in 6.2. Our experiments were conducted using the fairseq
[18] Transformer implementation. All experiments used infix no-
tation for source expressions (line 2 of Table 2), 8 attention heads,
vocabulary size of 40, batch size of 4096 tokens, 8000 warmup steps,
inverse square root learning rate schedule with maximum LR of
0.05, and ADAM optimizer with 𝛽1 = 0.9, 𝛽2 = 0.98. The vocabulary
was constructed using whitespace tokenization. While MT models
usually split tokens into subwords in the natural language setting,
the tokens in our mathematical expressions are so short that there
are no meaningful subword units, and whitespace tokenization is
sufficient. Models were trained using cross-entropy loss, stopping
when no improvement in validation loss was achieved at 10 consec-
utive checkpoints. Training took about 1 hour per model on one
NVIDIA Tesla P100 GPU.

Our experiments successfully tuned hyperparameters for ma-
chine translation of symbolic expressions to parenthesized mathe-
matical expressions. We found that the best hyperparameters are:
2 Transformer layers deep on both encoder and decoder side and
model dimension of 40 (equal to the vocabulary size), with corre-
sponding feedforward network dimension of 160. Conceptually,
model dimension is the “width” of the model, or the number of
hidden units at each layer. Using the best hyperparameter settings,
we achieved a BLEU score of 40.3 on validation data and 40.6 on
testing data. As shown in Table 3, the model dimension, i.e. the num-
ber of hidden units per self-attention layer, is the most important
hyperparameter for scaling transformers down to mathematical
expressions. However, our results also show that model depth is
important and that optimal performance is only achieved when
both depth and width of the model are scaled down considerably
from the base transformer. The use of a smaller model also means
that training takes less time, money, and energy than a full-size
transformer.

Fig. 4 shows the training and validation loss curves for our best
experiment. Training loss is shown in red and validation loss is
shown in blue. The x-axis is the number of training steps (gradient
updates) conducted, and the y-axis is a unitless loss value repre-
senting the current “wrongness” of the model’s predictions. As
training continues, both training and validation loss curves level
off and begin to converge, showing that the model is fitting prop-
erly to the data. This indicates that we have a reasonable set of
hyperparameters and we can expect good performance in future
MT experiments.



Figure 4: Training (red) and validation (blue) loss curves for

our best MTmodel. Convergence of the two curves indicates

model is fitting properly to data.

6 EVALUATION

In this section, we evaluate the two phases of PERFUME, separately.
In order to evaluate the symbolic execution phase, we extract the
symbolic expression of a number of handcrafted functions and com-
pare these expressions, manually, to the source code. Afterward,
we motivate the applicability of PERFUME to real-world scenarios
by presenting a case study. Here, we extract a symbolic expression
from a function from a binary executable found within the ArduPi-
lot project [2]. Finally, we discuss the shortcomings of standard
machine translation evaluation metrics and alternative metrics that
are better-suited for symbolic mathematics.

6.1 Symbolic Execution

6.1.1 Evaluating on Synthetic Data. We start the evaluation of the
symbolic execution phase of PERFUME on a number of handcrafted
functions. We create these functions such that the input parameters
are used in a mathematical computation, which is then returned,
in order to conform to the assumptions discussed in Section 4.1.
We show a number of these functions in Table 4, as well as the
corresponding symbolic expression. In this table, we can see that
the symbolic expressions extracted for the functions f1, f2, f3 and
f4, match the source code nearly identically. For function f4 a
slight difference is introduced, transforming 2.0 * a into a + a.
The symbolic expressions extracted for the functions f5 and f6, on
the other hand, are almost unrecognizable from the source code.
For both these functions, the difference originates from how the
source code instructions are encoded into binary instructions. For
function f5, note that calculating (a*1717986919)>>1)-(a>>31) is mathe-
matically equivalent to calculating a / 5 in modulus 232 (32 is
the bit width of the integer type of this program). The compiler
opted for this encoding of the mathematical computation, as it is
more computationally efficient. Finally, the complexity in the sym-
bolic expression for function f6 is introduced by how floating point
values are compared.

6.1.2 Symbolic Expression Summarising. Next, we evaluate the
ability of PERFUME to summarise symbolic expressions. Listing 3
shows a function using a function from the SX library [23] to cal-
culate the mathematical floor function of a number.

Source Extracted Symbolic Expression
float f1(float a, float b) {

return 3.0 * a / b;
}

(a * 3.0)/ b

float f2(float a, int b) {
if (b) {

return a / 2;
} else {

return 3.0 * a;
}

}

If(b!=0,(a/2.0),(3.0*a))

float f3(float a, float b, float c) {
return pow(a * b, 4) + cos(c);

}

(cos(c))+(pow(a*b,4.0))

float f4(float a, float b) {
return 2.0 * a + b;

}

b+(a+a)

int f5(int a, int b) {
return (a / 5) * b;

}

b*((a*1717986919)>>1)-(a>>31)

float f6(float a, float b) {
if (a <= b) {

return a;
} else {

return b;
}

}

If(((If(b<a,1,(If(b>a,0,(If(b==a,64,69))
))))&&1)==0,a,b)

Table 4: A number of handcrafted functions we use to evalu-

ate the symbolic execution phase of PERFUME and the cor-

responding simplified symbolic expression.

1 float f(float a, float b) {
2 return a * sx_floor(b);
3 }

Listing 3: An example program to show the difference in

understandability of two symbolic expression extracted by

PERFUME of a function using the sx_floor function of the

math library, SX [23]

We use this function to show the significant difference sym-
bolic expression summarising can make in the understandability
of a symbolic expression. Figure 5 shows the resulting symbolic
expression when the subexpressions generated during symbolic
execution of the sx_floor function is included. It can be seen that
the expression is complicated and difficult to understand. On the
other hand, when we instruct PERFUME to summarise the func-
tion, sx_floor with the symbol floor, the resulting expression is
reduced to: (floor(b))* a.

6.1.3 Case Study: ArduPilot. To test the effectiveness of the sym-
bolic execution of PERFUME, we apply it to a target function from
a binary executable found within the ArduPilot project [2]. We
identify a function that corresponds to the assumptions we make
regarding the target function, discussed in Section 4. In particular,
we use the function shown in Listing 4, from the rover module in
ArduPilot, as target function.

1 float get_steering_out_rate(float desired_rate , bool
motor_limit_left , bool motor_limit_right , float dt);

Listing 4: The prototype of the function within the

ArduPilot project [2], we use as target function, to evaluate

symbolic expression extraction.

This function calculates a steering servo output, which it returns,
from a given desired rate, given as function input parameter.

We perform symbolic expression extraction on this function.
When naming the symbolic variables for the input parameters, we
use the same names as used for the variables in the source code.
Note that at the binary level, the C++ language passes a pointer



Figure 5: The simplified symbolic expression extracted from the program show in Listing 3, when including the subexpressions

from the sx_floor function.

to the specific instance to a called instance method as the first
function parameter. We use the name this for the symbolic vari-
able corresponding this function parameter. We instruct PERFUME
to replace the symbolic expressions of the functions update_all,
get_yaw_rate_earth and get_ff with symbolic function calls
where each function has the same name as in the source code.
As the extracted symbolic expression has 296 leaves, we only show
a subexpression below.
...
update_all(this+16,

desired_rate,
get_yaw_rate_earth(mem_fffffffffff80000_1675_64),
0

) +
get_ff(this+16)
...

The symbol mem_fffffffffff80000_1675_64 in this subexpres-
sion is a symbolic variable caused by a symbolic memory access.
We discuss the challenge these present in Section 8.2. Finally, we
show a portion of the source code to which this subepxression
corresponds in Listing 5. The correspondence between the original
source code and the symbolic expression can clearly be seen.

1 float output = _steer_rate_pid.update_all(_desired_turn_rate ,
2 _ahrs.get_yaw_rate_earth (),
3 (motor_limit_left || motor_limit_right)
4 );
5 output += _steer_rate_pid.get_ff ();

Listing 5: Two lines of

source code of the get_steering_out_rate function of the

rover module from ArduPilot [2].

6.2 Machine Translation

The standard evaluation metric in machine translation is BLEU [19].
BLEU measures the proportion of 1-grams through 4-grams that
match between the output translation and the reference translation.
While this is a useful metric for natural language, it does not capture
mathematical equivalence well. Therefore, the most pressing goal
for the MT part of our work is to establish a better metric than
BLEU for translation quality in the mathematical domain.

BLEU was originally proposed in the context of natural language
translation, as a metric for similarity between a MT system’s output
and one or more “correct” reference translations produced by hu-
man translators. BLEU measures n-gram-wise matching between
the output and the reference, but it has no notion of overall “cor-
rectness” or conveyance of meaning. Additionally, BLEU’s reliance
on n-grams means it is very sensitive to the order of output tokens.
This is a desirable property for natural language where word order

affects meaning. However, in a mathematical domain where asso-
ciativity and commutativity apply, it has the effect of scoring two
mathematically equivalent outputs differently.

More generally, BLEU is primarily concerned with surface-level
string similarity rather than semantic correctness. This problem has
been recognized in the NLP community since BLEU became widely
used [6]. It poses particular problems for our use case. Ultimately,
we care much more about whether the MT system’s output is al-
gebraically equivalent to the reference expression than about how
many n-grams overlap between the two expressions. To choose
models that can produce mathematically correct output and to
teach them that they should do so, we need an evaluation metric
that encodes the type of matching and correctness that is most
important for our use case.

This evaluation metric question is actually a subproblem of a
larger problem encountered using models optimized for human lan-
guage to produce symbolic math output. Mathematical expressions
have different syntax and semantics than natural language sen-
tences. The major syntactic issue we have encountered is the issue
of balancing parentheses. While [11] showed that self-attention net-
works cannot be theoretically guaranteed to recognize or generate
balanced parentheses, [10] showed that they can generally perform
well enough to be useful in practice. In our use case, we have found
empirically that most of our transformer output is only off by one
or two closing parentheses (either missing or extra inserted at the
end) and is therefore easily corrected during postprocessing.

While unbalanced parentheses cause expressions to differ from
the reference by only a few tokens and therefore do not affect the
BLEU score too much, they cause significant downstream prob-
lems. Because we care about mathematical equivalency more than
token-wise matching, we plan to use the SymPy symbolic mathe-
matics library [16] to simplify and check equivalence of generated
expressions. Initial tests of this method failed because SymPy fails
to process expressions with unbalanced parentheses. After applying
heuristic postprocessing to rebalance the parentheses in MT output,
we found that SymPy simplification and equivalence checking can
be used as an auxiliary evaluation metric on validation and test
data.

7 RELATEDWORK

We provide a brief overview of related works.We broadly categorize
the works into signature-based function approaches and semantic-
pattern matching approaches. Signature-based approaches. A
plethora of works exist that focus on identifying signatures of func-
tions within a binary program. State-of-the-art binary analysis
tools such as IDA Pro [9], Ghidra [17], and angr [1] are equipped
with the capability of detecting when common libraries are used



by a binary, e.g., standard math functions. Similarly, tools such as
Byteweight [4] that extract feature signatures provide more robust
signature-detection, but they do not provide a generalizable mech-
anism for recovering math expressions for unknown functions.
Semantic pattern-matching. Recent works have similarly used
pattern-matching or signatures to map binary representations to
their embedded cyber-physical system contexts. Although the afore-
mentioned binary analysis tools are equipped with decompilers,
they do not recover the high-level algorithmic expressions we are
targeting. ICSREF [13] used signature-based techniques to recover
the entire semantics of an embedded cyber-physical system con-
troller. In theory, such an approach could provide a deterministic
mapping of functions to high-level expressions. However, this ap-
proach does not generalize for unknown binary functions. Similarly,
recent works in binary similarity analysis have focused on first ex-
tracting and identifying semantic patterns for known mathematical
functions, e.g., cryptographic functions [14, 26]. However, these
works are still limited to the known set of patterns, and would be
complementary to PERFUME. The Mismo [22] framework is closest
to our approach as it performs semantic pattern-matching between
the abstract syntax trees of known control algorithms to the ab-
stract syntax trees of symbolically executed functions. However,
this approach relies on the completeness of the known function
templates. Moreover, the approach is not robust to changes in the
ordering of arithmetic operations. However, future work can focus
on mapping PERFUME’s extract mathematical expressions to the
set of known mathematical functions. Establishing a better met-
ric for formal equivalence of symbolic expressions would further
facilitate such semantic pattern-matching.

8 DISCUSSION & CHALLENGES

8.1 Fine-grained math sequences extraction

In the current version of PERFUME, the analysis is performed on a
target function, which we assume follows a very particular format
in terms of prototype. There is room for improving PERFUME, to
allow us to extract and translate any mathematical computations.
To move away from a function-level based approach, the next logi-
cal step is to define an analysis that performs symbolic execution
on a sequence of instructions. Ideally, PERFUME would identify
the instructions that contribute to a mathematical computation,
automatically. A road to achieve this, could be to identify the result
of the mathematical computation in the binary code. This could
be, for example, the instruction that saves the final result of the
computation to memory or a register. Then, to identify the instruc-
tions that make up the mathematical computation, PERFUME can
calculate a backward slice from this identified result instruction.
As a result, PERFUME only needs to perform symbolic execution
on the slice instead of the entire function. This will allow analysts
to use PERFUME on a finer granularity and also yield significant
improvements in terms of symbolic execution time. However, cal-
culating an accurate backward slice via static analysis is an open
research problem orthogonal to PERFUME.

8.2 Scalability

While translation works well for simple functions, as shown in Sec-
tion 6, we expect to encounter a number of challenges when scaling

up to functions used in real-world programs. In Section 4, we make
the assumption that the sought after mathematical computation
can be expressed solely in terms of the input parameters of the
function. In real-world programs, this may not necessarily be the
case, as computations often rely on memory accesses to retrieve
values. These can be either to a memory address passed as pointer
via the input parameters of the function, or to global memory. In
the symbolic expression, these will manifest as symbolic variables,
unrelated to the input of the function. This, will complicate the
understandability of the expression for the analyst. Furthermore,
we expect computations implemented in real-world programs to
be significantly larger. As symbolic execution is a computation-
ally expensive process, this may pose a significant limitation to
analyzing complicated functions. Even if a symbolic expression
is extracted successfully, such an expression may be very compli-
cated, in terms of sequence length. For example, in Figure 5 we
show the expression for calculating the floor of a number. There
is a notable contrast between the simplicity of the mathematical
concept and the length of its expression. This presents a challenge
if the analyst does not have sufficient information to propose a
meaningful name to summarize such a function, as long expres-
sions are a challenge for MT. Generally, the semantic complexity of
the mathematical expressions is not a significant concern for MT
models, because the math expressions are still less complex than
natural language sentences. Translating more complex expressions
will require larger transformers than we are currently using, but
these transformers will still be small enough to be trainable on our
hardware in a reasonable amount of time. Our main concern with
scalability of our MT models is the increase in sequence length for
more complicated functions. In particular, MT models face practical
limitations on the number of tokens per sequence they can process.
While there is no theoretical limit on the input length for transform-
ers, the memory requirement of the self-attention mechanism is
quadratic in sequence length. Additionally, longer sequences mean
that fewer examples will fit in GPU memory, and batch sizes must
be small. Too small a batch size can increase training time and lead
to suboptimal model performance.

8.3 Pointer & data references

While PERFUME has the ability to abstract away the symbolic
expressions contained within the callee functions of the target func-
tion, these callee functions are also subject to strict assumptions,
similar to the target function. In particular, in order to use a sym-
bolic function in lieu of the symbolic expressions extracted from a
callee function, it is necessary that this function follows a specific
format. This format is similar to the restrictions we place on the tar-
get function, in the sense that we assume the input parameters are
used directly in the mathematical computation. Also, we assume the
callee function only passes data back to the caller function via the
return value. It becomes significantly more complicated to do the
replacement when these assumptions no longer hold. It is possible,
for example, that the callee function receives pointers as its input
parameters, which are then dereferenced and used in the mathe-
matical computations. Similarly, it is also possible that the callee
function does not pass the result of the mathematical computation
back to the caller function via return value. Instead, this can also be



1 void Quaternion_multiply(Quaternion* q1, Quaternion* q2,
Quaternion* output) {

2 ...
3 output.v[0] = q1->v[0] * q2->w
4 + q1->w * q2->v[0]
5 + q1->v[1] * q2->v[2]
6 - q1->v[2] * q2->v[1];
7 output.v[1] = ...;
8 output.v[2] = ...;
9 }

Listing 6: An example of program starting and returning

with data reference [25]

done by modifying the memory at these pointers directly. This is
common in code implementing vector and matrix mathematics. We
provided an example of such function in Listing 6. How to capture
this behavior in a symbolic expression is not immediate.

8.4 Semantic gaps introduced by compiler

optimization

As we have seen in Section 6, besides the natural gap between
high-level mathematics and its implementations, there are several
cases where compiler introduces differences in the binary code. We
listed a few examples in Table 5. These cases cannot be naively
translated with the current PERFUME pipeline and require more
sophisticated approaches to match the mathematics equivalent.

Integer (a * 5) (a « 2) + a
Float (a * -1) a XOR 0x80000000

Table 5: Examples of compiler introduced differences.

8.5 Limitations of Symbolic Expressions

Summarising

The ability of PERFUME to automatically include highlevel sym-
bolic functions currently requires the analyst to select which func-
tions to summarise and to supply a meaningful name for the replace-
ment symbolic function. A direction to overcome these limitations
could be to perform the replacement of subexpressions only after
symbolic execution has been completed. The idea is to analyze
various subexpressions of the final symbolic expression in order
to identify any of these that perform a well-known mathematical
computation. These can then be replaced with an appropriate sym-
bolic function to create a new higher level symbolic expression
with improved understandability.

Another problem we encountered when symbolic executing
binaries from ArduPilot is handling indirect function calls, caused
by invoking class functions. In the C++ programming language,
class functions are often stored as function pointers in a class data
structure. Invoking such a function, involves calculating the target
of the call operation dynamically. Resolving such indirect jumps is
an open research problem.

8.6 Higher Level Representation

While PERFUME has shown promise in converting low-level math-
ematical computations to a human-readable form, the output rep-
resentation is still not at a level you would find, for example, in
a text book. We are exploring the possibilities of two advanced

target representations. The first is to generate more complex math
expressions like integration, differentiation, matrix arithmetic, etc.
The other is to combine multiple parts of math expressions into
flow charts of controlling diagrams.

8.7 Next Steps for Machine Translation

We have two current goals within the MT section of the project.
Our first goal is machine translation directly from assembly code to
mathematical expressions. We are currently working on hyperpa-
rameter tuning, using the values established in our previous work
as a starting point. So far, we are finding that we need a much larger
translation model to handle assembly code, and we have not yet
achieved a useful translation directly from assembly to mathemati-
cal expressions. However, based on our preliminary results, we are
optimistic that direct assembly-to-math translation will be possible.

Our second and more general goal is to further improve our
architecture, training, and evaluation to be well-suited for math-
ematical expressions, with evaluation as our first priority. Ideally,
our evaluation would go beyond binary equivalence checking to
a metric that gives partial credit for partially correct expressions.
Therefore, we plan to use tree edit distance (TED) as a metric for
how close to equivalent two unequal expressions are. TED is a nat-
ural choice for several reasons. First, mathematical expressions can
be easily expressed as trees, where leaves are variables and internal
nodes are operators. Second, edit distance metrics encode a notion
of how far from the reference the output actually is; intuitively,
this is similar to the cross-entropy loss value used during training.
Finally, TED allows for a cost function that depends on where the
node is in the tree, so it is possible to penalize mistakes that affect
a greater proportion of the output more heavily. Intuitively, we
would like to penalize an incorrect negative sign that is at a low
tree depth, meaning it distributes over several terms, more heavily
than a deeper sign that only affects a few terms. While we initially
had some concerns about the efficiency and practicality of incor-
porating TED into our evaluation, the AP-TED+ algorithm of [20]
uses time and space linear in the size of the input trees and has
been shown to run in a few milliseconds for trees comparable in
size to our data. In order to incentivize mathematical correctness
during training, we plan to introduce a TED term and a binary
correctness term to the cross-entropy loss function. We also plan
to explore task-specific refinements to the attention mechanism to
better capture the syntax of mathematical expressions.

9 CONCLUSION

In this paper, we presented PERFUME, a framework to extract high-
level mathematical expressions from binary programs. PERFUME
symbolically executes target functions while simplifying the output
representation from bit vector arithmetic to integer arithmetic, i.e.,
a more human-readable representation. The simplified represen-
tation is then fed into a machine translation model to translate
the symbolic output to “natural" math expressions. We presented
preliminary findings for candidate functions within real-world em-
bedded firmware code, and presented quantitative results from
the subsequent machine translation. We have integrated the sym-
bolic execution component as a plug-in for Ghidra. We enumerated
future directions for both the symbolic and machine translation



components, which include validating our approach in the context
of analyst workflows.
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